Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Metabolites ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668317

RESUMO

The wide spread of microplastics has fueled growing public health concern globally. Due to their porous structure and large surface area, microplastics can serve as carriers for other environmental pollutants, including heavy metals. Although the toxic effects of microplastics or heavy metals have been reported previously, investigations into the sex-differential health effects of combined exposure to microplastics and heavy metals are lacking. In the present study, the effects of polystyrene microplastics and lead(II) co-exposure on the gut microbiome, intestinal permeability, and fecal metabolome were examined in both male and female mice. Combined exposure of polystyrene microplastics and lead(II) increased intestinal permeability in both male and female mice. Sex-specific responses to the co-exposure were found in gut bacteria, fungi, microbial metabolic pathways, microbial genes encoding antibiotic resistance and virulence factors, as well as fecal metabolic profiles. In particular, Shannon and Simpson indices of gut bacteria were reduced by the co-exposure only in female mice. A total of 34 and 13 fecal metabolites were altered in the co-exposure group in female and male mice, respectively, among which only three metabolites were shared by both sexes. These sex-specific responses to the co-exposure need to be taken into consideration when investigating the combined toxic effects of microplastics and heavy metals on the gut microbiota.

2.
Expert Opin Drug Saf ; : 1-9, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38641999

RESUMO

BACKGROUND: Opioids are the most frequently used drugs to treat pain in cancer patients. However opioid analgesics can cause adverse effects and potential drug-drug interaction. RESEARCH DESIGN AND METHODS: This cross-sectional retrospective study analyzed pDDI in 1839 patients with opioid analgesics in a large comprehensive hospital in China from January 1 to 31 December 2022. Three drug interaction databases were used to screen for pDDI including Drugs (U.S.A.), Medscape (U.S.A.), and Drug Assistant of Dingxiangyuan (China). RESULTS: The prevalence of pDDIs among 1839 patients was around 41.27% of 759 patients, and 564 patients (74.31%) with pDDIs were diagnosed with tumor. Further, the total of 275 various pDDIs combinations were identified. The combination of oxycodone with morphine had the most frequent occurrence of 229 times, and its adverse effects mainly related to exacerbate central respiratory depression. While, gender, tumor, number of diagnoses, and the variety of opioid analgesics used were independent risk factors for pDDIs. CONCLUSIONS: Outpatients taking opioid analgesics had a higher incidence of pDDIs. As consequently, optimized monitoring and management of patients taking opioid analgesics is recommended in order to ensure patient medication safety.

3.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
4.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564866

RESUMO

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Assuntos
Aldicarb , Inseticidas , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Oxilipinas , Camundongos Endogâmicos C57BL , Hormônios , Homeostase
5.
Kidney Int Rep ; 9(3): 671-685, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481512

RESUMO

Introduction: Disruption of gut microbiota underpins some of the metabolic alterations observed in chronic kidney disease (CKD). Methods: In a nonrandomized, open-label, 3-phase pilot trial, with repeated measures within each phase, we examined the efficacy of oligofructose-enriched inulin (p-inulin) in changing the gut microbiome and their metabolic products in 15 patients with CKD. The stability of microbiome and metabolome was studied during the pretreatment phase (8 weeks), a p-inulin treatment phase (12 weeks), and a post treatment phase (8 weeks) of the study. Results: Study participants completed 373 of the 420 expected study visits (88.8%). Adherence to p-inulin was 83.4%. 16S rRNA sequencing was performed in 368 stool samples. A total of 1085 stool, urine, and plasma samples were subjected to untargeted metabolomic studies. p-inulin administration altered the composition of the gut microbiota significantly, with an increase in abundance of Bifidobacterium and Anaerostipes. Intersubject variations in microbiome and metabolome were larger than intrasubject variation, indicating the stability of the gut microbiome within each phase of the study. Overall metabolite compositions assessed by beta diversity in urine and stool metabolic profiles were significantly different across study phases. Several specific metabolites in stool, urine, and plasma were significant at false discovery rate (FDR) ≤ 0.1 over phase. Specifically, there was significant enrichment in microbial metabolites derived from saccharolysis. Conclusion: Results from our study highlight the stability of the gut microbiome and the expansive effect of p-inulin on microbiome and host cometabolism in patients with CKD. Findings from this study will enable rigorous design of microbiome-based intervention trials.

6.
Chem Biodivers ; 21(4): e202400209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419385

RESUMO

One new fawcettimine-type Lycopodium alkaloid, hupertimine F (1), together with five known (2-6) Lycopodium alkaloids were isolated from Huperzia goebelii. The structure of 1 was elucidated by 1D and 2D NMR spectra, HRESIMS, and X-ray diffraction. Structurally, 1 represents the fourth example of Lycopodium alkaloids characterized by a 5/5/5/5/6 pentacyclic ring system with a 1-aza-7-oxabicyclo[2.2.1]heptane moiety. These known compounds 2, 3, 5, and 6 were isolated from H. goebelii for the first time. Compounds 1-6 were evaluated for acetylcholinesterase, butyrylcholinesterase and monoamine oxidase B inhibitory activities in vitro.


Assuntos
Alcaloides , Huperzia , Lycopodium , Huperzia/química , Lycopodium/química , Butirilcolinesterase , Acetilcolinesterase/química , Estrutura Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Alcaloides/farmacologia , Alcaloides/química
7.
Appl Microbiol Biotechnol ; 108(1): 197, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324086

RESUMO

Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.


Assuntos
Sistemas CRISPR-Cas , Saccharomycetales , DNA , Proteínas de Fluorescência Verde , Licopeno , RNA Guia de Sistemas CRISPR-Cas
8.
Appl Microbiol Biotechnol ; 108(1): 84, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189953

RESUMO

The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.


Assuntos
Citrus , Flavanonas , Hidroxilação , Flavonoides
9.
Sci Total Environ ; 919: 169603, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272087

RESUMO

Sucralose has raised concerns regarding its safety and recent studies have demonstrated that sucralose consumption can disrupt the normal gut microbiome and alter metabolic profiles in mice. However, the extent to which this perturbation affects the functional interaction between the microbiota and the host, as well as its potential impact on host health, remains largely unexplored. Here, we aimed to investigate whether chronic sucralose consumption, at levels within the Acceptable Daily Intake (ADI), could disturb key gut microbial functions and lead to adverse health effects in mice. Following six-month sucralose consumption, several bacterial genera associated with bile acid metabolism were decreased, including Lactobacillus and Ruminococcus. Consequently, the richness of secondary bile acid biosynthetic pathway and bacterial bile salt hydrolase gene were decreased in the sucralose-treated gut microbiome. Compared to controls, sucralose-consuming mice exhibited significantly lower ratios of free bile acids and taurine-conjugated bile acids in their livers. Additionally, several farnesoid X receptor (FXR) agonists were decreased in sucralose-treated mice. This reduction in hepatic FXR activation was associated with altered expression of down-stream genes, in the liver. Moreover, the expression of key lipogenic genes was up-regulated in the livers of sucralose-treated mice. Changes in hepatic lipid profiles were also observed, characterized by lower ceramide levels, a decreased PC/PE ratio, and a mildly increase in lipid accumulation. Additionally, sucralose-consumed mice exhibited higher hepatic cholesterol level compared to control mice, with up-regulation of cholesterol efflux genes and down-regulation of genes associated with reverse cholesterol transport. In conclusion, chronic sucralose consumption disrupts FXR signaling activation and perturbs hepatic lipid and cholesterol homeostasis, potentially by diminishing the bile acid metabolic capacity of the gut microbiome. These findings shed light on the complex interplay between sucralose, the gut microbiota, and host metabolism, raising important questions about the safety of its long-term consumption.


Assuntos
Microbioma Gastrointestinal , Sacarose/análogos & derivados , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado/metabolismo , Homeostase , Colesterol , Ácidos e Sais Biliares/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL
10.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060311

RESUMO

Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Trombocitemia Essencial , Humanos , Camundongos , Animais , Multiômica , Fosfatidilinositol 3-Quinases/genética , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Trombocitemia Essencial/genética , Inflamação , Serina-Treonina Quinases TOR/genética , Trifosfato de Adenosina , Janus Quinase 2/genética , Mutação
11.
Cancer Res ; 84(3): 479-492, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095536

RESUMO

Osimertinib is a third-generation covalent EGFR inhibitor that is used in treating non-small cell lung cancer. First-generation EGFR inhibitors were found to elicit pro-differentiation effect on acute myeloid leukemia (AML) cells in preclinical studies, but clinical trials yielded mostly negative results. Here, we report that osimertinib selectively induced apoptosis of CD34+ leukemia stem/progenitor cells but not CD34- cells in EGFR-negative AML and chronic myeloid leukemia (CML). Covalent binding of osimertinib to CD34 at cysteines 199 and 177 and suppression of Src family kinases (SFK) and downstream STAT3 activation contributed to osimertinib-induced cell death. SFK and STAT3 inhibition induced synthetic lethality with osimertinib in primary CD34+ cells. CD34 expression was elevated in AML cells compared with their normal counterparts. Genomic, transcriptomic, and proteomic profiling identified mutation and gene expression signatures of patients with AML with high CD34 expression, and univariate and multivariate analyses indicated the adverse prognostic significance of high expression of CD34. Osimertinib treatment induced responses in AML patient-derived xenograft models that correlated with CD34 expression while sparing normal CD34+ cells. Clinical responses were observed in two patients with CD34high AML who were treated with osimertinib on a compassionate-use basis. These findings reveal the therapeutic potential of osimertinib for treating CD34high AML and CML and describe an EGFR-independent mechanism of osimertinib-induced cell death in myeloid leukemia. SIGNIFICANCE: Osimertinib binds CD34 and selectively kills CD34+ leukemia cells to induce remission in preclinical models and patients with AML with a high percentage of CD34+ blasts, providing therapeutic options for myeloid leukemia patients.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Leucemia Mieloide Aguda , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteômica , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Leucemia Mieloide Aguda/genética , Células Progenitoras Mieloides , Receptores ErbB/metabolismo , Antígenos CD34/metabolismo , Células-Tronco Neoplásicas/metabolismo
12.
Plant Physiol ; 194(4): 2249-2262, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109500

RESUMO

Desiccation is typically fatal, but a small number of land plants have evolved vegetative desiccation tolerance (VDT), allowing them to dry without dying through a process called anhydrobiosis. Advances in sequencing technologies have enabled the investigation of genomes for desiccation-tolerant plants over the past decade. However, a dedicated and integrated database for these valuable genomic resources has been lacking. Our prolonged interest in VDT plant genomes motivated us to create the "Drying without Dying" database, which contains a total of 16 VDT-related plant genomes (including 10 mosses) and incorporates 10 genomes that are closely related to VDT plants. The database features bioinformatic tools, such as blast and homologous cluster search, sequence retrieval, Gene Ontology term and metabolic pathway enrichment statistics, expression profiling, co-expression network extraction, and JBrowser exploration for each genome. To demonstrate its utility, we conducted tailored PFAM family statistical analyses, and we discovered that the drought-responsive ABA transporter AWPM-19 family is significantly tandemly duplicated in all bryophytes but rarely so in tracheophytes. Transcriptomic investigations also revealed that response patterns following desiccation diverged between bryophytes and angiosperms. Combined, the analyses provided genomic and transcriptomic evidence supporting a possible divergence and lineage-specific evolution of VDT in plants. The database can be accessed at http://desiccation.novogene.com. We expect this initial release of the "Drying without Dying" plant genome database will facilitate future discovery of VDT genetic resources.


Assuntos
Briófitas , Dessecação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Genoma de Planta/genética , Transcriptoma/genética , Briófitas/genética
13.
Bioorg Chem ; 142: 106962, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992623

RESUMO

Two new dimeric Lycopodium alkaloids, casuattimines A and B (1 and 2), along with twelve previously undescribed Lycopodium alkaloids, casuattimines C-N (3-14), and eight known Lycopodium alkaloids, were isolated from Lycopodiastrum casuarinoides. Casuattimines A and B (1 and 2) are the first two ether-linked Lycopodium alkaloid dimers. Casuattimines C and D (3 and 4) are unique Lycopodium alkaloids characterized by a long fatty acid chain. Structural elucidation was achieved through HRESIMS, NMR, and electronic circular dichroism (ECD) calculations. In addition, the absolute configurations of compounds 7, 13, and 14 were determined by single crystal X-ray diffraction. Compounds 1, 2, and 4 demonstrated notable Cav3.1 channel inhibitory activities presenting IC50 values of 10.75 ± 1.02 µM, 9.33 ± 0.79 µM, and 7.14 ± 0.86 µM, respectively. The dynamics of compound 4 against the Cav3.1 channel and preliminary structure-activity relationships of these active Lycopodium alkaloids were also discussed.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Lycopodium/química , Estrutura Molecular , Inibidores da Colinesterase/farmacologia , Lycopodiaceae/química , Alcaloides/farmacologia , Alcaloides/química
14.
Behav Brain Funct ; 19(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110991

RESUMO

As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.


Assuntos
Astrócitos , Conexina 43 , Humanos , Astrócitos/metabolismo , Conexina 43/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
15.
Metabolites ; 13(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999206

RESUMO

Asthenopia is a syndrome based on the symptoms of eye discomfort that has become a chronic disease that interferes with and harms people's physical and mental health. Lutein is an internationally recognized "eye nutrient", and studies have shown that it can protect the retina and relieve visual fatigue. In this study, lutein was extracted from marigold (Tagetes erecta L.) and saponified. The purified lutein concentration measured by HPLC was 50.12 mg/100 g. Then, purified lutein was modified to be water-soluble by nanoscale modification and microencapsulation technology. Water-soluble lutein was then mixed with a leaching solution of Chinese wolfberry and chrysanthemum to make a functional beverage. The effects of this beverage on hepatic antioxidant enzymes and the alleviation of visual fatigue in a rat model of diabetes were investigated for 4 weeks. Lutein intake of 0.72 (medium-lutein beverage group) and 1.44 mg/mL (high-lutein beverage group) relieved visual fatigue, ameliorated turbidity symptoms of impaired crystalline lenses, reduced hepatic MDA concentration, increased hepatic GSH concentration, and significantly increased the activities of the hepatic antioxidant enzymes SOD, CAT, GSH-Px, and GR in rats. These data suggest that a lutein-rich beverage is an effective and harmless way to increase the total anti-oxidation capacity of lenses and alleviate visual fatigue.

16.
Innov Aging ; 7(8): igad105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954524

RESUMO

Background and Objectives: Little is known about the sarcopenia transition process across different stages among Chinese community-dwelling older adults. We aimed to explore dynamic transitions of sarcopenia and its influencing factors in Chinese older adults. Research Design and Methods: Data were derived from the China Health and Retirement Longitudinal Study. A total of 2856 older adults with complete data in the 2011, 2013, and 2015 waves were included in our study. Participants were categorized into 3 states: no sarcopenia, possible sarcopenia, and sarcopenia according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019) criteria. Continuous-time multistate Markov model was performed to estimate the 1-year transition probabilities and the associated factors of sarcopenia transitions. The association strength was expressed as hazard ratio and 95% confidence interval. Results: The progression and reversion rates between no sarcopenia and sarcopenia state were 6.01 and 9.20 per 100 person-years, respectively. The 1-year progression probability to possible sarcopenia was higher compared with the likelihood of moving to the sarcopenia state (0.127 vs 0.034). The reversion probability to no sarcopenia was also higher among those with possible sarcopenia (0.281 vs 0.157). Older age, rural living, worse cognition status, higher chronic disease numbers, and lower nutrition status measured by body mass index accelerated the sarcopenia progression. Cognition status and body mass index level were related to higher chances of reverting. Discussion and Implications: Possible sarcopenia might be a critical time window to promote sarcopenia reversion. Timely interventions aimed at delaying the progression and facilitating sarcopenia recovery should focus on improving cognitive function and nutrition levels.

18.
Plant Cell Physiol ; 64(11): 1419-1432, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37706231

RESUMO

Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.


Assuntos
Briófitas , Bryopsida , Desidratação , Bryopsida/genética , Hidratação , Aminoácidos , Fosfatos , Glucose
19.
Ear Nose Throat J ; : 1455613231198986, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715691

RESUMO

Rhabdomyosarcoma (RMS) is a rare and aggressive cancerous tumor that arises from embryonal mesenchymal cells with skeletal muscle differentiation, and it is exceedingly rare that occurs specifically in the larynx. To date, only 22 instances of laryngeal pleomorphic RMSs have been documented in adults. Consequently, there is limited information available to assist healthcare professionals in effectively handling RMS in the larynx of adult patients. Here, we present an uncommon occurrence involving a 45-year-old man who experienced progressive hoarseness and received a diagnosis of pleomorphic RMS affecting the larynx. Pleomorphic RMS had been pathologically diagnosed after a vertical hemilaryngectomy. Following the surgical intervention, the patient underwent chemotherapy and radiation therapy. As of now, there have been no indications of tumor recurrence.

20.
Metabolites ; 13(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37755305

RESUMO

Growing evidence has proven that the gut microbiota has a tremendous impact on mammalian health [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...